PhilosophyDay
Современная философия
Статистическая и логическая вероятностьДругая философия / Правдоподобные рассуждения / Статистическая и логическая вероятностьСтраница 2
Численно вероятность определяется через относительную частоту, отсюда ее другое название – частотной.
Такой подход принят в статистике, где вероятность отождествляется с относительной частотой появления массового случайного события при достаточно длительных испытаниях.
Р(А) = lim m/n
n → ∞
где т – обозначает число появления событий с интересующим исследователя свойством;
п – число всех возможных испытаний.
Правда, против этого также выдвигаются возражения, в частности, утверждают, что бесконечное множество испытаний на практике осуществить невозможно, но с подобной точки зрения пришлось бы отказаться от предельных понятий в науке вообще (мгновенная скорость, абсолютно упругое тело, идеальный газ и т.п.), а между тем они играют существенную роль в построении любой теоретической науки.
Важно обратить внимание на то, что статистическая вероятность характеризует непосредственно не отдельное событие, а определенный класс событий. Когда мы говорим о бракованных изделиях, то речь идет о вероятности появления не индивидуального изделия, а некоторой их группы. Точно так же, когда говорят о вероятности заболевания, то не имеют в виду какого-либо конкретного человека, а лишь определенный процент заболевших. С такой точки зрения статистическое понятие вероятности оказывается шире классического, ибо убедиться в правильности того, что при бросании кости выпадает любое количество очков от 1 до 6, можно путем длительных испытаний и их статистического анализа. Более того, если кость или монета будет фальсифицированы, например, нарушением их симметричной формы, то все равно практически только путем длительных бросаний можно установить, какой стороной или гранью монета или костяной кубик будет падать чаще, чем другой.
Субъективную вероятность не следует смешивать с логической вероятностью, которая хотя и не имеет непосредственного отношения к объективному миру, но определяет логическое отношение между посылками и заключением вероятностного рассуждения. Как и отношение логической дедукции (или вывода), логическая вероятность характеризует особую, вероятностную связь между посылками и заключением, и такая связь не зависит от веры, желания и намерения субъекта, поэтому она имеет интерсубъективный характер. Всякий, кто принимает посылки такого правдоподобного рассуждения не может по своему произволу приписывать вероятность заключению, ибо последнее зависит от того, в какой степени посылки подтверждают заключение. Если обозначить логическую вероятность через Р, подтверждающие ее посылки (факты, свидетельства, показания и т.п.) – через Е, а степень подтверждения – через с, тогда заключение правдоподобного рассуждения Н, являющееся гипотезой, можно представить формулой:
Р(Н/Е) = с.
Относительно определения степени вероятности правдоподобного рассуждения мнения исследователей расходятся. Известный английский экономист Дж. M. Кейнс, написавший первый трактат по логической вероятности, считал, что эта степень может быть определена численно только в немногих случаях, чаще всего приходится иметь дело со сравнением одних вероятностей с другими, в некоторых случаях даже такое сравнение оказывается невозможным.
Смотрите также
11.2 Гипотеза лингвистической
относительности Сепира — Уорфа
Итак,
каково же соотношение детерминированности, конвенциональности каузальности
значений — или каков характер их детерминированности или каузальности? Где
пределы их альтернативности? Че ...
9. Аналитическая
эпистемология
В
аналитической философии теория познания всегда занимала особое и
даже привилегированное положение, будучи одной из тех немногих философских
дисциплин, правомерность принадлежности котор ...
5.2 Концепция "значение как
употребление" и ее приложения
Рассмотрим
основные аспекты концепции "значение как употребление", обсужденные в
"Философских исследованиях" Витгенштейна — работе, наиболее плотно
ассоциирующейся с у ...