PhilosophyDay
Современная философия
4.5.2 Модальные логикиДругая философия / Аналитическая философия / 4. Львовско-Варшавская
логическая школа и ее влияние на АФ / 4.5 Многозначные логики Я. Лукасевича / 4.5.2 Модальные логикиСтраница 2
Лукасевич предлагает для "основной модальной логики" следующую совокупность формул в качестве аксиом: (A1) ½¾ CpMp, (A2) ¾½CMpp, (A3) ¾½Mp, (A4) ½¾ EMpMNNp с правилами замены по определению (Lx=NMNx), подстановки в утвержденное выражение, подстановки в отбрасываемое выражение (если а отбрасывается и а есть подстановка b, то b должно быть отброшено), отделения для утвержденных выражений и отделения для отбрасываемых выражений (если Cxy утверждено, а y - отброшено, то x также отброшено).
|
11 |
22 |
33 |
44 |
ТN |
MM |
11 |
11 |
32 |
33 |
44 |
44 |
11 |
22 |
11 |
11 |
33 |
33 |
33 |
22 |
33 |
11 |
12 |
11 |
22 |
22 |
33 |
44 |
11 |
11 |
11 |
11 |
11 |
33 |
Из того факта, что существуют две опосредующие истину и ложь оценки (2 и 3) не следует делать вывод, что в системе модальной логики Лукасевича существуют два понятия возможности. Тем не менее в L-системе имеют место т.н. возможности-близнецы M и M1. Они неразличимы, когда выступают отдельно, но разнятся, когда входят в одну формулу, например, формулы MMp и M1M1p эквивалентны, а формулы M1Mp и MM1p неэквивалентны. Этот факт в системе модальной логики Лукасевича не имеет интуитивной интерпретации. Четырехзначная матрица вообще изменила взгляд Лукасевича на значение многозначных логик: если раньше он считал, что выбор следует делать между трехзначной логикой или бесконечнозначной, то теперь он признал четырехзначную систему адекватной для выражения понятия возможности.
Некоторые неясные вопросы Лукасевич пытается выяснить путем сравнения с другими модальными системами, в частности, с системой фон Вригта, а не более известными системами Льюиса, поскольку они основываются на т.н. "строгой импликации", которая более сильна, нежели "материальная импликация", используемая Лукасевичем. Он подвергает сомнению т.н. правило необходимости: если x является формулой системы, то Lx - также формула. Лукасевич считает, что предложение является непосредственно ложным или истинным и не видит причины, по которой тавтология должна быть "более истинной", чем "обычное" истинное предложение, а контрадикторное предложение "более ложно", чем "обычная" ложь. В этой позиции чувствуется влияние Твардовского, подкрепленное взглядами Лесьневского. Лукасевич спрашивает: "Почему мы должны вводить необходимость и невозможность в логику, если не существуют истинные аподиктические предложения? На этот упрек я отвечаю, что прежде всего мы интересуемся проблематическими предложениями вида Mx и MNx, которые могут быть истинны и используемы, хотя их аргументы и отбрасываются, а вводя проблематические предложения мы не можем обойти их отрицания, т.е. аподиктических предложений ибо предложения, обоих видов неразрывно между собой связаны".(S.295) Важной для понимания Лукасевичем понятия возможности является формула CKMpMqMKpq, не имеющая места в системе Льюиса. Лукасевич рассматривает следующий пример:
Смотрите также
6.2 Дескриптивная метафизика
П.Ф.Стросона
П.Ф.Стросон
создал "дескриптивную метафизику" — учение, которое радикально
пересмотрело все исходные предпосылки философии анализа. При эттом он был уверен,
что продолжает и одн ...
Апокрифическая философия
Несмотря на жестокую партийно-идоологическую цензуру, среди
научной интеллигенции всегда сохранялась оппозиция «кaзенщине в философии», то
явная, то скрытая, завуалированная в формулы маркси ...
Пифагор. Гераклит. Пифагор.
Принципы математики – числа – считал также принципами мира;
числовые отношения, пропорции отражают гармонию мира. - Мир – «Космос» - в нем
порядок и гармония. - Верил в переселение душ, возвращение ...